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Abstract—In the control-based approach to robotics, com- is motivated to reproduce behavior that results in activation
plex behavior is created by sequencing and combining control of a reflex or an “interesting” result. Piaget's model is an
primitives. While it is desirable for the robot to autonomously inspiration for the current paper. In a process similar to the
learn the correct control sequence, searching through the large . . .
number of potential solutions can be time consuming. This paper circular reactl_on_, this paper proposes that t_he robot repeatedly
constrains this search to variations of a generalized solution €Xecutes variations of the general behavior encoded by the
encoded in a framework known as anaction schema A new action schema. By observing the effects of different instanti-
algorithm, SCHEMA STRUCTURED LEARNING is proposed that ations of the action schema, the robot learns how to produce

repeatedly executes variations of the generalized solution in the desired behavior in different problem contexts.

search of instantiations that satisfy action schema objectives. This -, ) .
approach is tested in a grasping task where Dexter, the UMass Arbib’s schema theonybrings the notion of the schema
humanoid robot, learns which reaching and grasping controllers iNto @ computational framework. At the lowest level, schema

maximize the probability of grasp success. theory proposes two major types of schemas: the perceptual
schema and the motor schema [4]. A perceptual schema is a
process that responds to only a specific, task-relevant concept.
In contrast to the sense-think-act paradigm, control-basAdmotor schema is a generalized program that describes how
and behavior-based approaches to robotics realize desiedaccomplish a task. When a perceptual schema triggers
behavior by sequencing and combining primitive controllethat its target concept is present, it can “give access” to a
or behaviors. These approaches depend heavily on a highmaotor schema that takes the appropriate action. Schema theory
level decision-making mechanism that selects the correct peeposes that a large number of perceptual schemas and motor
guence or combination of primitives to execute. One way &themas can interact in the context o€@ordinated control
automatically learn the correct sequence of primitives is fwogram thereby generating intelligent behavior [4]. Arkin
encode the problem as a Markov Decision Process, and saplies some of these ideas to behavior-based robotics [2].
it using Reinforcement Learning [1], [2]. However, in the Gary Drescher also develops a schema-based approach to in-
absence of am priori model of controller performance, thistelligent behavior. Drescherschema mechanisappropriates
approach requires the robot to explore the effects executithg Piagetian schema as its fundamental building block and
every action in every state. Although the system designéevelops a complex framework for computationally learning
can constrain the potential action choices [1], the need mew conceptsifems and hypothesizing new schemas to inter-
explore a large number of actions can slow down learningct with these concepts [5]. Learning starts with a few schemas
This paper addresses this problem by encoding a generaliaed primitive items that represent basic motor activities and
solution as anaction schemalearning speed is increasedperceptions. By executing schemas, the system discovers new
by constraining the system only to consider variations @ems and proposes new schemas for interacting with these
this generalized solution. A new algorithm callstHEMA items.
STRUCTURED LEARNINGdiscovers which instantiations of the This paper proposes a new approach to robot learning based
action schema are appropriate in different problem contexts a generalized representation of robot behavior known as
This paper explores this approach in the context or reachitige action schemaThe action schema may hastantiated
and grasping. by specific implementations of the generalized behavior. An
Our approach is based on the notion ofsehema first instantiation is considered wucceedr fail depending upon
proposed in the psychology literature by Piaget. Piaget loos&Wnether it results in desired state transitions specified by the
defines a schema to be a mental representation of an actiomaion schema. A new on-line learning algorithBGHEMA
perception [3]. Through the process adsimilation the child STRUCTURED LEARNING is proposed that explores different
adapts an existing schema to incorporate new experiendastantiations and discovers which instantiations are most
encoding these experiences as variations on the same gerliely to succeed through a process of trial-and-error. This
structure. In what Piaget calls a circular reaction, the chifghper explores the action schema approach in the context of

I. INTRODUCTION



robotic reaching and grasping. Generalized grasping behawontrollers are denoted),|? < ¢,|7, where ¢;,|? is said to
is represented by BOCALIZE-REACH-GRASPaction schema. execute “subject-to” (i.e. in the nullspace af)|7.
SCHEMA STRUCTURED LEARNING discovers how to select System state is measured in terms of controller dynamics. At
appropriate reach and grasp control actions based on coamsg point in time, the instantaneous error and the instantaneous
visual information including object location, orientation, ecgradient of error can be evaluated. Although the more general
centricity, and length. A series of experiments are reportsgistem dynamics can be treated [7], in this paper we will
where Dexter, the UMass bimanual humanoid robot, attempmisnsider only controller convergence to establish system state.
to grasp an object using various different reach and grasp prifer example, the state of having grasped an object with some
itives. The robot learns to select reach and grasp primitives tledifector is represented by the convergence status of a grasp
optimize the probability of a successful grasp. This paper @®ntroller parameterized by that effector transform.
an expansion of our earlier work reported in [6]. The current This paper creates grasping behavior by combining and
paper better defines optimality in the context of the actisgequencing controllers based on thecALIzE, REACH, and
schema and proposes a sample-based version of the algoritamasp artificial potentials. One.oCALIZE controller is used

In addition to describing controllers used for localizingin the experiments described in this paper. This controller,
reaching, and grasping, Section Il gives a brief overview of the|7! , segments the object and characterizes the resulting
control basisapproach to robot behavior used in this papeblob in terms of its three-dimensional Cartesian position,
Sections Il and IV describe the action schema framewor&rientation, length, and eccentricity.
define the notion of the optimal policy instantiation, and give The REACH controllers that are used in this paper are
an algorithm,schema structured learnindgor autonomously referenced with respect to the last object position recovered by
discovering these optimal instantiations. Finally, Section ® LOCALIZE controller. There are two types ®EACH con-
presents experimental results that demonstsatema struc- trollers:qﬁrp\ij(””) and¢ro|ij(9). ¢Tp\ij(z) moves the centroid
tured learningto be a practical way of autonomously learningf the y contact set to a position offset af from the object
reaching and grasping behavior. centroid along the object major axis,,|7*” associates each
contact with a line from the contact frame centroid through
the contact itselfo,., ij(e) orients the manipulator so that the

When using a control-based approach, a framework dgerage angle between each contact's line and the object major
ngeded that allows contr_ollers to be sequenged in an orggis (for they set of contacts) if. If ¢, g;,(w) executes alone,
nized way. Thecontrol basisframework accomplishes this bythen the robot reaches to the position while leaving orientation
organizing the set of viable controllers and providing a robughspecified. If orientation control executes subject to position
way of evaluating system state [1]. This section describes t@@ntrol, bro ay(0) 4 brp ij(x), then the robot reaches to the
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control basis framework and details controllers that are usgdsjred position while also attempting to achieve the desired
for localizing, reaching, and grasping. orientation.

The control basis can systematically specify an arbitrary sgasp controllers displace contacts toward good grasp
gloseo!-loop controller by matching anmtificial potential func- configurations using feedback control [8], [9]. This approach
tion with a sensor transformand effector transforni1]. The ;5eq tactile feedback to calculate an error gradient and displace
potential functpn specifies controller objectives, the effect rasp contacts on the object surface without a geometric
transform specifies what degrees .of freedom the control ject model. After making light contact with the object using
uses, and the sensor transform implements the controllghsitive tactile load cells, the controller displaces contacts
feedback loop. For example, considerrR&ACH controller. iyward minima in the grasp error function using discrete

The sensor transform specifies the goal_ (_:onfiguration of tB?obes [8] or a continuous sliding motion [10]. This paper uses
end-effector. The effector transform specifies what degrees;gf, GRASPcontrollers:g,| 712 and g, |712. ¢,|7122 uses three
: 212,
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freedom are used to accomplish the task. physical contacts to synthesize a grasp, whij&1> combines
Ingeneral, the control basis realizes a complete Coffyo physical contacts (out of three) intovirtual finger [11]
troller by selecting one artificial potential from a Sefnat is considered to apply a single force that opposes a third

Il. CONTROL-BASED REACHING AND GRASPING

® = {¢1,¢2,...}, one sensor transform from a sEt = physical contact.
{01,09,...}, and one effector transform from a s&t =
{71,72,...}. Given ®, 3, and T, the set of controllers that Ill. THE ACTION SCHEMA

may be generated il C ¢ x ¥ x T. When specifying  The action schema encodes generalized robot behavior that
a fully-instantiated controller, the notatiop;|? denotes the can be instantiated by a specified set of control policies. This
controller constructed by parameterizing potential functipn is advantageous in the context of learning because it constrains
with sensor transforna and effector transformr. the number of potential solutions that need to be considered.
The control basis framework also allows composite coffhe generalized behavior, encoded by the action schema, is
trollers to be constructed that execute multiple constituent caepresented by a policy defined over an abstract state and
trollers concurrently. Each constituent controller is assignedaation space. A one-to-many mapping is defined between the
priority, and controllers with lower priority are executed irabstract state and action space anduaderlying state and
the nullspace of controllers with higher priority. Compositaction space. This underlying space is assumed to represent
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Fig. 1. The localize-reach-grasp action schema. The circles with binary <>
numbers in them represent abstract states. The arrows represent abstract @) o)
actions and possible transitions. Q" < (ﬂp|T I O
. . . . . g t(prp) C) 011
system state and action with the finest granularity available
in the control representation. The mapping represents a set of
underlying states by a single abstract state and corresponds @,
each abstract action with a number of potential underlying
action alternatives. This allows the action schema’s abstract O

policy to be translated into a number pblicy instantiations
that (_j(_afme a set of potent|al_ _SOIUtlonS'_ The action _SChema . 6’ 2.  Possible instantiations of theoCALIZE-REACH-GRASP action
specifies an abstract transition function that defines desit@8ema. The inverse action mappigg;!, projects the abstragEACH action
transition behavior in the underlying space. The objective offto the set of possiblREACH actions.

schema structured learning is to discover which instantiations

of an action schema'’s abstract policy are most likely to result

in transitions that are consistent with the abstract transitiGf@PS €ach abstract state to an equivalence class of states.
function. In the case of thee OCALIZE-REACH-GRASP action schema

Let S” x A’ be the abstract state-action space defined by ifjgstrated in Figure 1, the three abstract actions map to the
action schema, and lef x A be the underlying state-actionVariousLOCALIZE, REACH, and GRASP controllers described

space that represents possible robot behaviors. The abstfagection Ii:
policy is a mapping from abstract states to abstract actions, g Y()

a8 — A (1)

= a7, } ©)

9 ) = {p|012@) ¢, |72 4)
¢ro 6123(0) N ¢7>P|0123(z)
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This function deterministically specifies which abstract action
the system should take in any given abstract state. For exam-
ple, Figure 1 illustrates theOCALIZE-REACH-GRASP action Gro|72) q | 71200}
schema. The circles illustrate four abstract states that represent

the generalized stages of the behavior. There are three abstract

actions:¢; (LOCALIZE), ¢, (REACH), and¢, (GRASP. The 0 Udy) = {Bg]7122, 67221 (5)
abstract policy,r’, defines which abstract actions are to be g 9imizs 2 T2
taken from abstract states: The state and action mappings above allow the abstract

policy to be translated into a set of potential policy instan-

/ —
™ (000) = ¢ (2) tiations. This can be accomplished on a step-by-step basis
7'(001) = ¢np by determining the set of actions that are consistent with the
7'(011) = . abstract policy in a given state. Assume that the system is in
(011) g

) o . abstract states;. The abstract action specified bY(s}) can be
For example, if the robot is in abstract stdt#0), thenw’ projected onto a set of equivalent underlying actions using the
executes abstract actian. inverse action mapping,~ (7' (s})). Therefore, given the state

The abstract policy is mapped to policy instantiations thahqg action mapping, the abstract poliey, can be mapped
implement the same qualitative type of behavior. This poligynto any policy,r, such that,

mapping is derived from state and action mappings that group

together similar states and actions as follows. fets — S’ Vsy € 5, m(st) € B(st), (6)
andg : A — A’ be state and action mappings that unique
assign each underlying state and action to an abstract state _

? v B(s)) = g7 (7 (f(s1))- )

and action. The inverses of these functions are defined to be

(s ={s € S|f(s) =5} andg~1(a’) = {a € Alg(a) = These policies are callggolicy instantiationsof the abstract
a'}. g~! maps each abstract action to an equivalence clgsslicy. This is illustrated in Figure 2. Suppose that the robot
of actions (i.e., controllers) that perform the same functias in states, € S. The state mappingf(s2) = (001),

in different ways. In the control basis representation, thepeojects this state ont@01) € S’. From this abstract state,
controllers share the same artificial potential, but have dihe abstract policy takes abstract actign,, 7/(001) =
ferent sensor and effector parameterizations. Similgfly!  ¢,,,. Finally, the inverse action mappings~!, projects



this abstract action onto the reach choices,'(¢,,) = require that the path implicitly specified by and 7’ does
{00075, 00|75 brol 72 @ 01y |72 brof713” @ Ot cONtain cycles.
0'12(1‘

¢rp|712)}. Although this enumeration of potenti@EACH IV. OPTIMAL POLICY INSTANTIATIONS
controllers does not separately list controllers with different

position or orientation offsets),, implicitly maps to a real-
valued space oREACH controllers with different offsets.
The goal of schema structured learning is to discov

the pollcy msf[a.mtlatlon(s) .that maximizes the prqbab|l|ty ransition contraints. This is called tloptimal policy instanti-
meeting transition constraints specified by the action sche fion. This section defines the optimal policy instantiation and

The a<_:t|0n schema det_ermlmstlcally charact_e_rlzes the_ deswﬁ oduces theSCHEMA STRUCTURED LEARNING algorithm
behavior of the robot with the abstract transition function, given in Table |

The abstract policy encoded by the action schema maps to
many different policy instantiations. The goal of the system is

to discover which policy instantiations maximize the probabil-
{/ of reaching the goal, while satisfying the action schema’s

T: 8 x A — 8" (8) A. Definition of the Optimal Policy Instantiation

This specifies how the system must transition in response torhe abstract transition function defines how the robot sys-
executing the action. When executing actiog A from state tem must transition after executing actions. An action is said
s, € 9, the next states,.; € S, is consistent with the abstractto succeedvhen it causes a transition that is consistent with

transition function when the following holds true: the action schema abstract transition function. By induction, a
state-action trajectory succeeds when each component action
st+1 € N(st, a), (®)  succeeds. Aroptimal policy instantiation,=*, is one which
where maximizes the probability of a successful trajectory. Let
N(st,a) = f~HT'(f(s¢), 9(a))). (10) P7(als:) be the probability of a successful trajectory, given

that the system takes actienc A, starting in states, € S,
In this expressionf(s;) andg(a) translate the underlying stateand follows policy instantiationr after that. IfII is defined to
and action into their abstract equivalents. The abstract transé the set of all possible policies, then
tion function, 7’, maps this abstract action into an expected . .
next abstract state. Finally;~! translates the expected next P*(als,) = max P (als:) (3)

abstract state into a set of underlying next states. As long;@8Sthe maximum probability of a successful trajectory taken

actiona € A causes the robot to transition to one of thesger all possible policies. This allows the optimal policy to be
next states, the action is saidsocceedIf the action causes a cg|cylated using

different transition, then the actidails. For example, consider . .
the LOCALIZE-REACH-GRASP action schema illustrated in T (s¢) = arg max P*(alst), (14)

. . L. . a€B(sy)
Figure 2 again. The abstract transition function, L ) )
where B(s;) = g '(7'(f(s¢))) (Equation 7) is the set of

T'(000,¢;) = 001 (11) actions that are consistent with the abstract transition function
T'(001, ¢pp) = 011 when the system is in statg € S. The optimal policy always
T'(011,6,) = 111 selects the action that maximizes the probability of satisfying
y Yg - )

action schema transition constraints.

is encoded in the arrows in .the action schema on the nght.éf Calculating an Optimal Policy Instantiation
the robot takes abstract actign, from abstract stat¢001), ¢ . it is i ical , q
the abstract transition function requires the system to transitign-nfortunately, it is impractical to use Equations 13 and 14

to state(011). Suppose that the robot is in statge S, and ?AfeCﬂ): t(; solve_bflor th? op_tlmtal E’_O!{'_C%ns_tam'at'on’ i)_elcguse

executesbrp\iff)”. If the system does not transition to a state, '© ~c. O' POSSIDIE policy instantialions, 1S exponential in

s € 5, that maps to(011) € S, f(sis1) = (011), then the number of actions. However, as is the case with Markov

(;ﬁg(m) féils ’ * ’ Decision Processes (MDPs), this problem admits a dynamic
rp|T .

. . ramming algorithm that i lynomial in the number of
In schema structured learning, the robot continues to execﬂ{og a g algorithm that is polynomial in the number o

. . - . ; .wgble state-action pairs. Whereas the dynamic programmin
actions in accordance with the abstract policy until an actign P y prog 9

. . ) approach to MDPs requires successive approximation of the
fails or an absorbing state is reached. In th®CALIZE- PP q PP

REACH-GRASP action schema (Figure 1)j11) is an absorb- true value function, it is possible to solve for the optimal policy
ing state 9 ) instantiation of an action schema in a single “pass.”

Bringing th . togeth i h . Recall that P*(als;) is the maximum probability of a
ringing these pieces together, an action schema 1Sq&:cessful trajectory, given that the robot takes actiah A
represented as a tuple,

from states, € S and follows the optimal policy instantiation

S= (8 A 7T, (12) thereafter. This can be calculated recursively,
where §’ is the abstract state sef{ is the abstract action P*(als;) = P(succesg;,a)  (15)
set, ' defines the abstract policy, afdd defines the abstract Z T(st41]5t,a) m(ax )P*(a\st+1),
a€eB

transition function. When defining an action schema, we will ., enN(s,11,0) St+1



TABLE |

This set is drawn from the probability distributioR*(a|s)
SCHEMA STRUCTURED LEARNING ALGORITHM

marginalized over all states € f~!(s;), thereby over-
sampling regions of the action space that are estimated to have

EU”C“O”RSECPZEQ"A STRUCTURED LEARNING a high probability of leading to a successful trajectory. Step 8

2 Get current state; € S of SCHEMA STRUCTURED LEARN|NGr_esampIes this set based

3 Let B(st) = D) (7' (f(s1))) on the latest approximation d?*. This approach enables the

g. Evaluatterr*((st)) = argmaxgep(s,) P*(alst) algorithm to evaluate a real-valued action space (such as the
. xecuter™ (s . L. . .

6 Get next state,+, € S REACH controllgr vylth po_sm.on and orientation offsets) when

7 Update transition moddP(success:, a) selecting a policy instantiation to execute.

g ILfJPd‘?te Sa”(m")e fs%“lt dlﬁ’{:‘(sakb?sed IO”P* SCHEMA STRUCTURED LEARNING gains experience by
. action* (s ) failed, break from oop. . . . P .

10.  While f(s¢) is not in an absorbing state. repeatedly executing policy instantiations of the action schema.

While the system initially executes random instantiations of
the abstract policy, performance quickly improves. Assume
that the robot is in state, € S. In steps 3 and 4, the algorithm
evaluates the probability of a successful trajectdty(als;),
using Equation 17 for all actions i, (7'(f(s:))). By

X B . X Equation 14, the action that maximizes this probability is part
andT/(s:41]s+, a) is the probability that taking actioa from ¢ optimal policy instantiation (assuming that the sample
states, causes the robot to transition to staie, (notice the gt contains this action). Step 5 executes this action, and step
similarities to the standard Bellman equation.) If it is possiblg o ajuates the outcome of the action. Step 7 incorporates
to deterministically characterize hosuccessfubctions tran- g experience into the transition model. Step 8 re-samples
sition, then this equation can be simplified, Dy(s,) from the new estimate aP*. Steps 9 and 10 continue

to iterate taking actions until an action fails or an absorbing

where P(success;,a) is the probability that actiom suc-
ceeds from state,, N(s.y1,a) is defined in Equation 10,

. P(als) = (16) state is reachedSCHEMA STRUCTURED LEARNING must be
P(success: a) acB(T. (s a))P (a|Ts(s¢, a)), repeatedly executed until learning is complete.
where V. EXPERIMENTS
Ty:SxA—S, Tu(s,a)=si41 (17) A series of eight experiments were performed that char-

acterize the learning performance ®EHEMA STRUCTURED
is a function that deterministically characterizes how an acti&fARNING in the context of grasp synthesis. In each experi-
transitions if the action is assumed to be successful. Note thagnt, Dexter attempted to localize, reach, and grasp a towel
this does not mean that the underlying transition function musil measuring 20cm high and 10cm in diameter 26 times. In
be deterministic in general - the outcome is deterministic onlilese experiments, only three-fingered graspgy!2:, were

T123°

if the action succeeds. allowed. At the beginning of each trial, the towel roll was
placed vertically in approximately the same tabletop location.
C. Schema Structured Learning Algorithm Then,SCHEMA LEARNING was executed using theCALIZE-

. . ) . REACH-GRASP action schema until either the absorbing state

This approach to calculating the optimal policy instantiys reached or an action failed. In either case, the trial was
ation is the basis of tNECHEMA STRUCTURED LEARNING taminated, the system was reset, and a new trial was begun.
algorithm given in Table I. Given an action schema and the rigre 3 jllustrates the results. Figure 3(a) shows median
appropriate mapping, this algorithm learns the optimal poligyiasp error as a function of trial number. This is the grasp error
instantiation online through a trial-and-error process. Whereas,ssured after reaching to the object, but before executing
many trial-and-error learning algorithms require substantigle srasp controller. Before the 10th trial, the large median
training, the structure imposed by the action sche;ma fra”t?r‘asp errors indicate th&CHEMA STRUCTURED LEARNING
work makesSCHEMA STRUCTURED LEARNINGpractical for paq not yet discovered how to grasp the towel roll. This means
many real-life robot applications. As it is written in Table 4,4t thegrasP controller must correct this poor configuration
this algorithm executes one instantiation of the generahzgg displacing the contacts along the object surface toward a
t_)ehavior. Note that the algorithm must be executed muItipé%Od grasp configuration. However, by the 10th or 15th trial,
times in order to accumulate experience and learn. the robot has learned to select an instantiation ofRB&cH

A key feature of the version 0BCHEMA STRUCTURED controller that minimizes moment residual errors.
LEARNING given in Table | is that it is sample-based. Assume Figure 3(b) illustrates the manipulator poses to which the
that the robot is in states, € 5, and thata’ = 7'(f(s:)). yobot learns to reach. This contour plot shows the probability
Instead of evaluating every instantiation of the abstract policy grasp success as a function of orientation (vertical axis) and
this algorithm only evaluates a fixed number of samples frofysition (horizontal axis) relative to the object. Both position

the set, and orientation are measured in the same way as with the
Dysy(a') S g ' (a). (18) REACH controllers in Section II: position is the distance of
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Fig. 3. Results from the eight grasping experiments. (a) shows median initial grasp controller error (moment residual error) as a function of trial. This is
the quality of the grasp after executing the reach controller, but before the grasp controller. A high error indicates a poor grasp and a low error indicates a
good grasp. Note that median error reaches its lowest point after approximately 10 trials. (b) is a contour plot that shows the learned grasp knowledge. The
probability of grasp success is maximized when the manipulator reaches to a position halfway up the object (between 0.3 and 0.9) and an orientation almost
perpendicular to the object major axis.
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